# Self Organizing Networks WLAN IEEE 802.11 aka Wi-Fi SS 2021 Electronic lecture

## Max Riegel

#### About my person



#### Max Riegel

<maximilian.riegel@nokia.com> Senior Standards Specialist Nokia Standards – IEEE & Wi-Fi Standardization

- Job positions
  - prior to 1998
    - Various positions regarding HW and SW development at Philips Kommunikations Industrie and TPS
  - 1998 2007
    - Responsible for IETF and IEEE Standardization at Siemens Communications
  - since 2007
    - Responsible for IEEE related standardization at NSN/Nokia Networks/Nokia
- Participation in IEEE 802.11 Standardization since 2000
- Currently voting member of IEEE 802.1 and IEEE 802.11
- Engagement in Wi-Fi Alliance and Head of Nokia delegation in Wireless Broadband Alliance
- Various Wi-Fi research and product designs in the Carrier/Enterprise Wi-Fi domain

## SS2021 Lectures overview

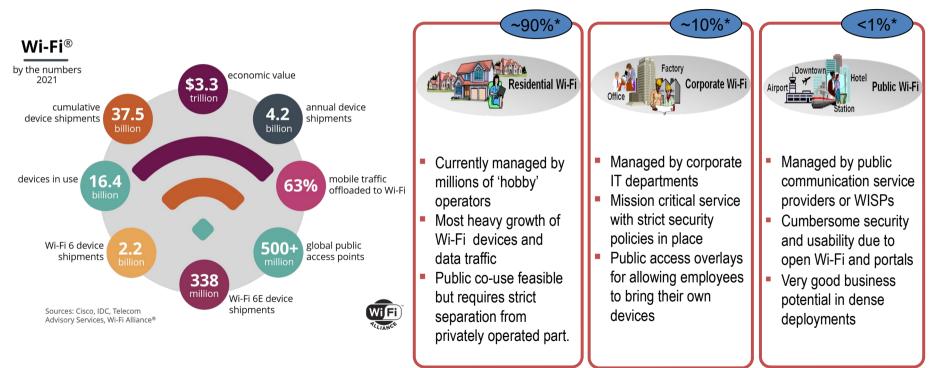
#### • June 17th

- Wi-Fi applications and markets
- Wi-Fi Standardization environment
- Wi-Fi Spectrum
- Wireless channel characteristics
- Direct Sequence Spread Spectrum (initial Wi-Fi radio)
- June 24th
  - Orthogonal Frequency Division Multiplex
  - Wi-Fi 2 .. Wi-Fi 7 radios
- July 1st
  - Wi-Fi system architecture
  - Medium access functions
- July 8th
  - MAC layer management frame formats
  - Quality of Service
- July 15th
  - Wi-Fi security
  - Mobility enhancements
  - (Wi-Fi roaming)

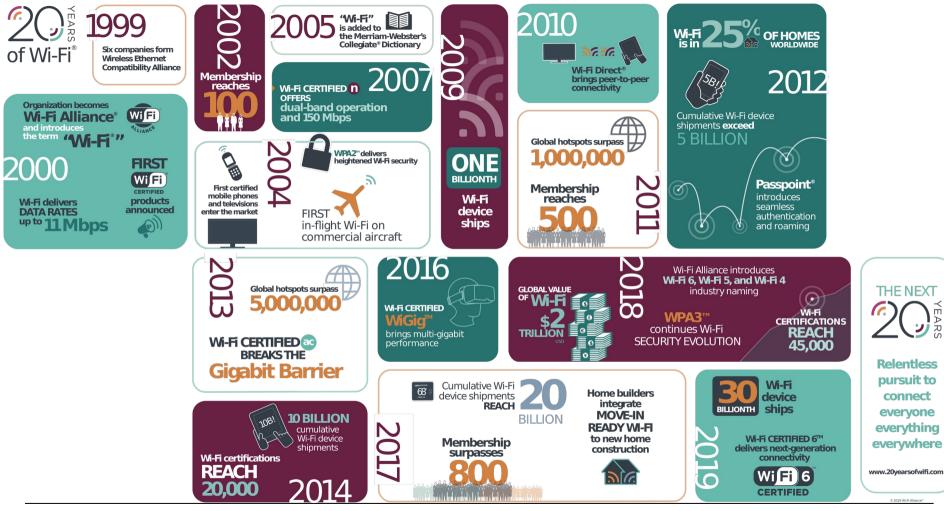
## **Overview Part 1**

- June 17th /June 24th
  - Wi-Fi applications and markets
  - Wi-Fi Standardization environment
    - IEEE 802.11 Standardization
    - Standards Reference
    - Wi-Fi Alliance Certification
  - Wi-Fi Spectrum
  - Wireless Channel Characteristics
  - Direct Sequence Spread Spectrum (initial Wi-Fi radio)
  - Orthogonal Frequency Division Multiplex
  - Wi-Fi 2 (OFDM)
  - Wi-Fi 3 (High Rate)
  - Wi-Fi 4 (High Throughput)
  - Wi-Fi 5 (Very High Throughput)
  - Wi-Fi 6 (High Efficiency)
  - Wi-Fi 5 vs. Wi-Fi 6
  - Looking ahead: Wi-Fi 7 (Extremely High Throughput)




#### WLAN IEEE 802.11 aka Wi-Fi

# **WI-FI APPLICATIONS AND MARKETS**


SON - WLAN IEEE 802.11 aka Wi-Fi

## Diversity of Wi-Fi terminals and access infrastructure

Wi-Fi is predominantly deployed in homes and indoors



\* Percentage of total APs; Source: ABIresearch 2010, Femtocells, Operator, Access Point and Chipset Market Analysis



SON - WLAN IEEE 802.11 aka Wi-Fi

©Max Riegel, 2021

2021-06-17

Ē

J D

## Segmenting the Wi-Fi device ecosystem

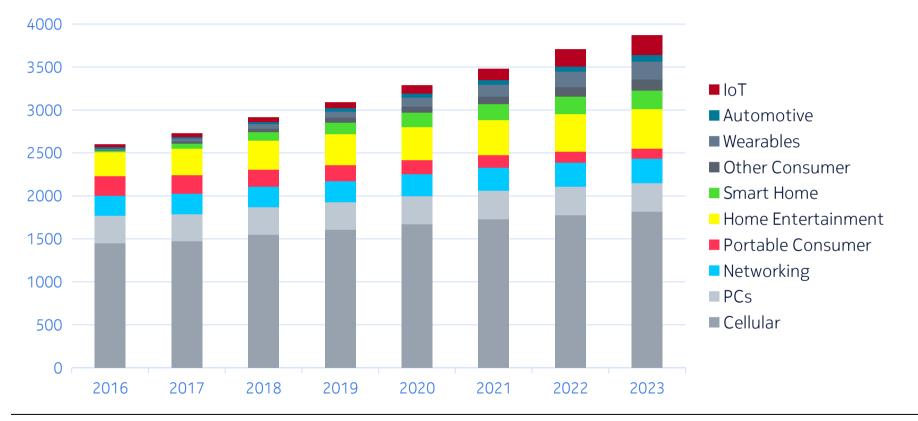
#### Source: ABI research 'Wireless Connectivity ICs' 2018

- Cellular (1474)
  - Smartphones
  - Feature Phones
- PCs (313)
  - Desktop PCs
  - Compute Sticks
  - Traditional Notebooks
  - Ultrabooks
  - Chromebooks
  - PC Accessories
  - Printers

- Networking (235)
  - Consumer APs
  - Consumer External Adapters
  - Enterprise APs
  - Carrier Wi-Fi APs
  - Mobile Hotspot Routers
  - Residential Wi-Fi Mesh Systems
  - Portable Consumer

#### (214)

- Media Tablets
- White Box Tablets
- Handheld Gaming
- Portable Media Players
- Digital Cameras/ Camcorders
- eBook Readers


- Home Entertainment (313)
  - Flat Panel TVs
  - DVD/Blu-Ray Players
  - UHD Blu-Ray Players
  - Set-Top Boxes
  - Media Streaming Adapters
  - OEM Remote Controls
  - Gaming Consoles
  - Speakers
  - Digital Photo Frames
- Other Consumer (25)
  - Consumer Robotics
  - Other Consumer Electronics Devices
- Smart Home (59)
  - Home Automation Control
  - Home Automation Devices
  - Residential Smart Lighting
- Smart Appliances
- Voice-Control Front Ends

- Wearables (33)
  - Smartwatches
- Smart Glasses
- Sports, Fitness, and Wellness Trackers
- Virtual Reality
- Wearable Cameras
- Wearable Scanners
- Automotive (19)
  - In-Car Infotainment
- loT (43)
  - Smart Cities
  - Healthcare
  - Energy Management
  - Asset Management
  - Video Surveillance
  - Location/Tracking
  - Monitoring/Status
  - Other Value-Added Applications

(Figures) reflect millions shipped Wi-Fi connectivity ICs in 2017

#### Yearly Wi-Fi device shipments

Source: ABI research 'Wireless Connectivity ICs' 2018



#### Mobile and Wi-Fi offload traffic from mobile devices

Wi-Fi increasingly carries the majority of traffic in mobile communications

Mobile Data Traffic and Offload Traffic, 2022

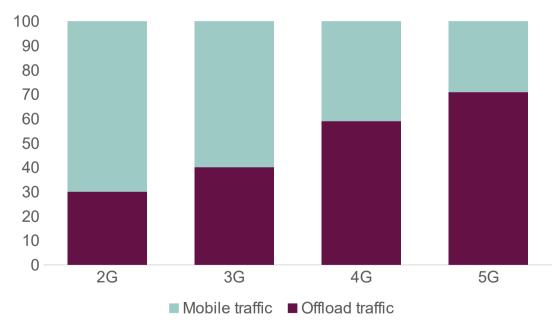



Chart source: Cisco VNI Mobile, 2019

WLAN IEEE 802.11 aka Wi-Fi

# **WI-FI STANDARDIZATION ENVIRONMENT**

#### IEEE 802.11 and Wi-Fi Alliance



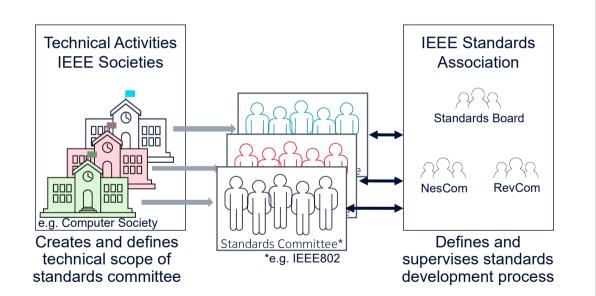
The IEEE 802.11 provides comprehensive technical specifications

Standards Framework



The Wi-Fi Alliance defines profiles for deployments and certification of products

> Compatibility Conformance

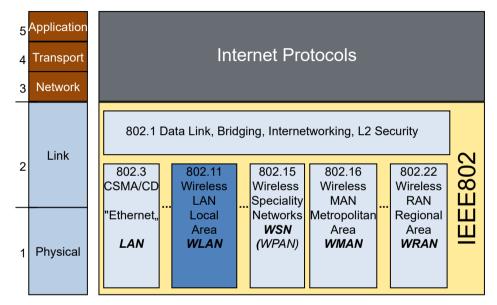

Wi-Fi Standardization Environment

## **IEEE 802.11 STANDARDIZATION**

### **IEEE** at a Glance



IEEE Societies set scope, IEEE Standards Association defines procedural aspects




# IEEE standardization process

- Mainly addressing functional components, very rarely system architectures
- Usually based on individual membership, i.e. voting rights belong to individuals
- Open access: anybody can participate without need for membership or payments
- Technical decisions through comprehensive voting

## IEEE 802 LAN/MAN Standardization Committee

#### Wireless LAN became topic in IEEE 802 LMSC ten years after its foundation.



Specifies only Physical and Link Layer. Complete set of standards for carrying IP

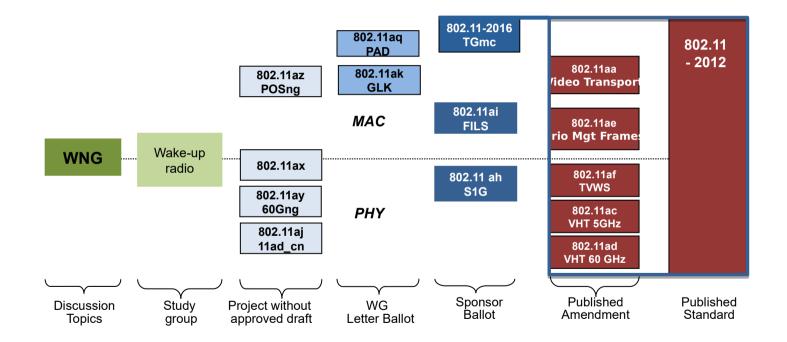
- Start of IEEE Computer Society Project 802 in February 1980.
  - Later renamed to "LMSC": LAN/MAN Standardization Committee
- Initial work on "Ethernet" -With 1 to 20 Mbps!
- IEEE 802.11 started in 1990
  - -Initially aimed for cash registers!
  - -Challenging regulatory!
- Further MAC and PHY groups added, e.g. 802.15, 802.16
- Unifying themes
  - -common upper interface to the Data Link Control
  - -common data framing

#### **IEEE 802.11 Specifications**

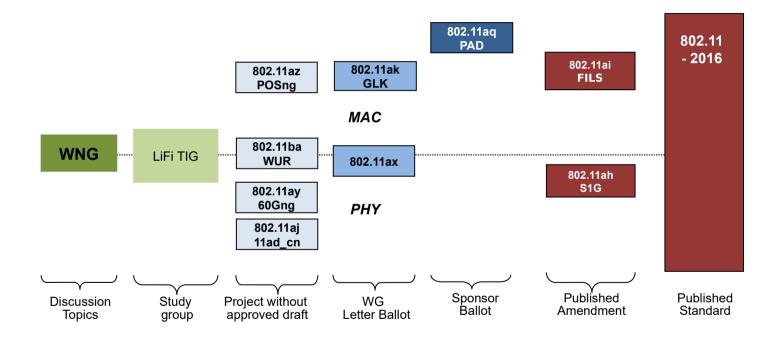
| IEEE 802.11-1997 | Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications                   | Jul 1997 |
|------------------|----------------------------------------------------------------------------------------------------|----------|
| IEEE 802.11      | Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications                   | Sep 1999 |
| IEEE 802.11a     | High-speed Physical Layer in the 5 GHz Band ( 54 Mbps in 5GHz)                                     | Sep 1999 |
| IEEE 802.11b     | Higher-Speed Physical Layer Extension in the 2.4 GHz Band (11 Mbps in 2.4 GHz)                     | Sep 1999 |
| IEEE 802.11c     | Support of the Internal Sublayer Service to cover bridge operations with 802.11 MAC => IEEE 802.1D | Oct 1998 |
| IEEE 802.11d     | Specification for operation in additional regulatory domains                                       | Jun 2001 |
| IEEE 802.11e     | Medium Access Control (MAC) Quality of Service Enhancements                                        | Nov 2005 |
| IEEE 802.11F     | Inter-Access Point Protocol => <u>Withdrawn February 2006</u>                                      | Jul 2003 |
| IEEE 802.11g     | Further Higher Data Rate Extension in the 2.4 GHz Band (54 Mbps in 2.4 Ghz)                        | Jun 2003 |
| IEEE 802.11h     | Spectrum and Transmit Power Management Extensions in the 5 GHz band in Europe                      | Oct 2003 |
| IEEE 802.11i     | Medium Access Control (MAC) Security Enhancements                                                  | Jul 2004 |
| IEEE 802.11j     | 4.9 GHz–5 GHz Operation in Japan                                                                   | Oct 2004 |
| IEEE 802.11-2007 | Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications                   | Jun 2007 |

#### IEEE 802.11 Specifications, continuation

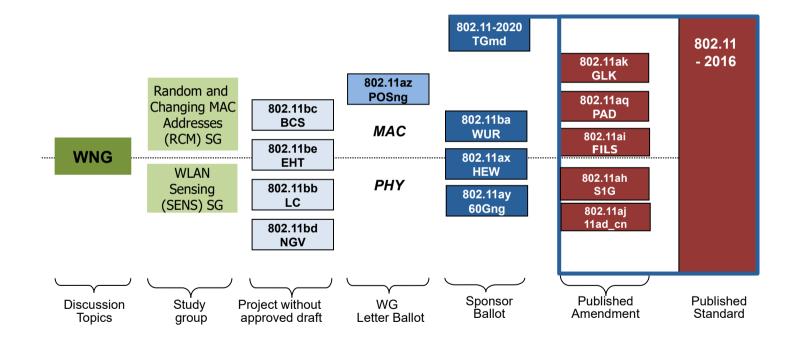
| IEEE 802.11-2007 | Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) spec           | Jun 2007 |
|------------------|----------------------------------------------------------------------------------|----------|
| IEEE 802.11k     | Radio Resource Measurement of Wireless LANs                                      | Jun 2008 |
| IEEE 802.11n     | Enhancements for Higher Throughput (4x 150 Mbps in 2.4/5GHz)                     | Oct 2009 |
| IEEE 802.11p     | WAVE—Wireless Access for the Vehicular Environment                               | Jul 2010 |
| IEEE 802.11r     | Fast Basic Service Set (BSS) Transition                                          | Jul 2008 |
| IEEE 802.11s     | Mesh Networking                                                                  | Sep 2011 |
| IEEE 802.11T     | Wireless Performance Prediction (WPP) => <u>Cancelled</u>                        |          |
| IEEE 802.11u     | Interworking with External Networks                                              | Feb 2011 |
| IEEE 802.11v     | IEEE 802.11 Wireless Network Management                                          | Feb 2011 |
| IEEE 802.11w     | Protected Management Frames                                                      | Sep 2009 |
| IEEE 802.11y     | 3650–3700 MHz Operation in USA                                                   | Nov 2008 |
| IEEE 802.11z     | Extensions to Direct Link Set-up (DLS)                                           | Oct 2010 |
| IEEE 802.11-2012 | Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications | Mar 2012 |


#### IEEE 802.11 Specifications, continuation

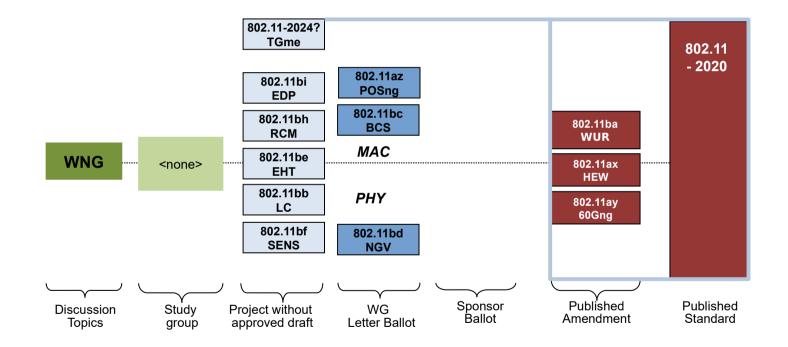
| IE | EE 802.11-2012 | Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) spec   | Mar 2012 |
|----|----------------|--------------------------------------------------------------------------|----------|
|    | IEEE 802.11aa  | MAC Enhancements for Robust Audio Video Streaming                        | May 2012 |
|    | IEEE 802.11ad  | Enhancements for Very High Throughput in the 60 GHz Band                 | Dec 2012 |
|    | IEEE 802.11ae  | Prioritization of Management Frames                                      | Apr 2012 |
|    | IEEE 802.11ac  | Enhancements for Very High Throughput for Operation in Bands below 6 GHz | Dec 2013 |
|    | IEEE 802.11af  | TV White Spaces Operation                                                | Dec 2013 |
| IE | EE 802.11-2016 | Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) spec   | Dec 2016 |
|    | IEEE 802.11ah  | Sub 1 GHz license-exempt operation                                       | Dec 2016 |
|    | IEEE 802.11ai  | Fast Initial Link Set-up                                                 | Dec 2016 |
|    | IEEE 802.11aj  | China Milli-Meter Wave (CMMW)                                            | Feb 2018 |
|    | IEEE 802.11ak  | Enhancements For Transit Links Within Bridged Networks                   | Jun 2018 |
|    | IEEE 802.11aq  | Pre-Association Discovery (PAD)                                          | Sep 2018 |
| IE | EE 802.11-2020 | Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) spec   | 12/2020  |


#### IEEE 802.11 ongoing standardization projects

| IEEE 802.11-2020 | Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) spec | 12/2020   |
|------------------|------------------------------------------------------------------------|-----------|
| IEEE 802.11ax    | High Efficiency WLAN                                                   | 02/2021   |
| IEEE 802.11ay    | Enhanced Throughput for Operation in License-Exempt Bands above 45 GHz | 03/2021   |
| P802.11az        | Next Generation Positioning                                            | ~ 12/2022 |
| IEEE 802.11ba    | Wake Up Radio (WUR)                                                    | 03/2021   |
| P802.11bb        | Light Communication (LC)                                               | ~ 12/2022 |
| P802.11bc        | Enhanced Broadcast Service                                             | ~ 09/2022 |
| P802.11bd        | Enhancements for Next Generation V2X                                   | ~ 09/2022 |
| P802.11be        | Extremely High Throughput                                              | ~ 05/2024 |
| P802.11bf        | WLAN Sensing                                                           | ~ 09/2024 |
| P802.11bh        | Operation with Randomized and Changing MAC Addresses                   | ~ 12/2024 |
| P802.11bi        | Enhanced Service with Data Privacy Protection                          | ~ 12/2024 |


#### IEEE 802.11 standards development (Status 06/2016)




#### IEEE 802.11 standards development (Status 06/2017)



#### IEEE 802.11 standards development (Status 06/2020)



#### IEEE 802.11 standards development (Status 06/2021)



Wi-Fi Standardization Environment

## **STANDARDS REFERENCE**

#### IEEE Std 802.11<sup>™</sup>-2020 + amendment 802.11ax<sup>™</sup>-2021



- Can be downloaded at no charge through the IEEE Get Program
  - <u>https://ieeexplore.ieee.org/browse/standards/get-program/</u> page/series?id=68
- No all the features specified in the standard are available in real Wi-Fi products
- This lecture presents behavior of real Wi-Fi products as specified by Wi-Fi Alliance in its certification programs
  - <u>https://www.wi-fi.org/discover-wi-fi/specifications</u>

#### **IEEE Standard for Information technology**

Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications

- Revision of IEEE Std 802.11-2016
  - Revision of IEEE Std 802.11-2012
    - Revision of IEEE Std 802.11-2007
      - Revision of IEEE Std 802.11-1999
        - First IEEE 802.11 standard release in 1997
- Comprises initial IEEE Std 802.11-1999 and all amendments IEEE 802.11a-1999 ... IEEE 802.11aq-2018
  - *i.e.:* a, b, d, e, g, h, l, j, k, n, p, r, s, u, v, w, y, z, aa, ac, ad, ae, af, ah, ai, aj, ak, aq

#### Amendment standard IEEE Std 802.11ax-2021

• Amendment 1: Enhancements for High-Efficiency WLAN

#### IEEE 802.11 radio standards evolution

| Std      | Release                                                                       | Freq.<br>(GHz) | Bandwidth<br>(MHz)        | Data rate <mark>per stream</mark><br>(Mbit/s)    | Allowable<br>MIMO<br>streams | Modulation     | Approximate<br>indoor range<br>(m) | Approximate<br>outdoor range<br>(m) |
|----------|-------------------------------------------------------------------------------|----------------|---------------------------|--------------------------------------------------|------------------------------|----------------|------------------------------------|-------------------------------------|
|          | Jun 1997                                                                      | 2.4            | 20                        | 1, 2                                             | 1                            | DSSS           | 40                                 | 150                                 |
| а        | Sep 1999                                                                      | 5              | 20**                      | 6, 9, 12, 18, 24, 36, 48, 54                     | 1                            | OFDM           | 40                                 | 150                                 |
| b        | Sep 1999                                                                      | 2.4            | 20                        | 5.5, 11                                          | 1                            | DSSS           | 40                                 | 150                                 |
| g        | Jun 2003                                                                      | 2.4            | 20                        | 6, 9, 12, 18, 24, 36, 48, 54                     | 1                            | OFDM<br>(DSSS) | 40                                 | 150                                 |
| n        | Oct 2009                                                                      | 2.4<br>5       | 20/40                     | up to 72.2/150                                   | 4                            | OFDM           | 60<br>40                           | 200<br>150                          |
| у        | Nov 2008                                                                      | 3.7            | 5/10/20                   | up to 13.5/27/54                                 | 1                            | OFDM           | -                                  | 5 000                               |
| ac       | Dec 2013                                                                      | 5              | 20/40/80/160              | up to 87/200/433/867                             | 8                            | OFDM           | 40                                 | 150                                 |
| ad       | Oct 2012                                                                      | 60             | 2160                      | up to 6 700                                      | 1                            | SC // OFDM     | line of sight                      | line of sight                       |
| af       | Dec 2013                                                                      | TV WS          | 1,2,4x 6/7/8              | up to 1,2,4x 26.7/26.7/35.5                      | 4                            | OFDM           | 100                                | 1000                                |
| ah       | Dec 2016                                                                      | < 1            | 1/2/4/8/16                | 0.15 up to 4.4/9/20/43/87                        | 4                            | OFDM           | 100                                | 1000                                |
| ax       | Feb 2021                                                                      | 16             | 2.5/5/10/20/<br>40/80/160 | up to 15/30/63/143/287/600/1201                  | 8                            | OFDMA          | 80                                 | 300                                 |
| ay       | Mar 2021                                                                      | 60             | 14 x 2160                 | N <sub>cb</sub> x 8.6 // 8.3/18.2/28.1/37.9 Gbps | 8                            | SC // OFDM     | line of sight                      | line of sight                       |
| * Prelim | Preliminary information; specifications still in early phases of development. |                |                           |                                                  |                              |                |                                    |                                     |

\*\* Half-clocked and guarter clocked variants available for 10 MHz and 5 MHz channel bandwidth, as used by IEEE 802.11p IEEE 802.11y-2008 is only licensed in the United States by the FCC; licensed spectrum allows for higher TX power

Wi-Fi Standardization Environment

# **WI-FI ALLIANCE CERTIFICATION**

#### The Wi-Fi Alliance

To overcome interoperability issues experienced with early IEEE 802.11 products, the Wireless Ethernet Compatibility Alliance (WECA) was founded in 1999 with the completion of IEEE 802.11b.

'Wi-Fi' was introduced as brand-name for interoperable IEEE 802.11 WLAN.

In 2001, WECA became the **Wi-Fi Alliance** 



Wi-Fi CERTIFIED<sup>™</sup> makes it Wi-Fi.



- Internationally recognized seal of approval for devices meeting industry-agreed standards for interoperability, security, and application specific protocols
- Interoperable with billions of installed devices
- Proven performance and security that provide positive user experiences
- ISO 17025 certification process of development and testing; testing conducted at independent test organizations around the world

#### The Wi-Fi Alliance Approach to Certification

Wi-Fi CERTIFIED products have to demonstrate that they can perform well in networks with other Wi-Fi CERTIFIED products, running common applications, in situations similar to those encountered in everyday use.

| Interoperability          | Rigorous test cases are used to ensure that<br>products from different equipment vendors<br>can interoperate in a wide variety of<br>configurations.                                                                            |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Backward<br>Compatibility | Backward compatibility protects<br>investments in legacy Wi-Fi products and<br>enables users to gradually upgrade and<br>expand their networks.                                                                                 |
| Innovation                | Timely introduction of new certification<br>programs as the latest technology and<br>specifications come into the marketplace.<br>Equipment vendor can differentiate in areas<br>that are not covered by certification testing. |

#### Generational Wi-Fi technology notation

- Up to 802.11ax, Wi-Fi radio technologies were identified through the project acronym of the related IEEE 802.11 standardization project.
  - 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac
- It led to ambiguous communication and slow adoption of new Wi-Fi radio technologies through the market.



- Aligned to the much better perceived notation of radio technologies in the cellular market, Wi-Fi Alliance moved forward and introduced a similar notation for Wi-Fi radio technologies.
  - E.g. cellular communications: 1G -> 2G -> 3G -> 4G -> 5G
- The next Wi-Fi radio technology based on IEEE 802.11ax will be denoted 'Wi-Fi 6'.
  - Wi-Fi certified products are identified through 'Wi-Fi CERTIFIED™ 6'
  - Wi-Fi 6E denotes the Wi-Fi 6 version able to operate also in the new 6 GHz band.

## Visualization of Wi-Fi generations

• Identification and visualization of various Wi-Fi radio technologies:

| If the most advanced technology<br>a device supports is | Then it shall be identified as<br>generation |
|---------------------------------------------------------|----------------------------------------------|
| 802.11ax                                                | Wi-Fi 6                                      |
| 802.11ac                                                | Wi-Fi 5                                      |
| 802.11n                                                 | Wi-Fi 4                                      |





- A simple and clear identification allows the user to distinct the radio technology supported by the equipment and used for a connection.
  - The main intention is the faster market adoption of new Wi-Fi technologies by creating more evident demand of users and operators.

#### Wi-Fi Alliance certification programs - overview

| Connectivity                               | Security                                                | Access                                    | Additional                      |
|--------------------------------------------|---------------------------------------------------------|-------------------------------------------|---------------------------------|
| Wi-Fi CERTIFIED 6™                         | Wi-Fi CERTIFIED WPA3™                                   | Wi-Fi CERTIFIED Passpoint®                | Power saving features           |
| Wi-Fi CERTIFIED™ n                         | Wi-Fi CERTIFIED<br>Enhanced Open™                       | Wi-Fi CERTIFIED<br>Easy Connect™          | Wi-Fi CERTIFIED<br>Home Design™ |
| Wi-Fi CERTIFIED™ ac                        | Protected Management Frames                             | Wi-Fi CERTIFIED Wi-Fi<br>Protected Setup™ |                                 |
| Wi-Fi CERTIFIED WiGig™                     |                                                         |                                           |                                 |
| Wi-Fi CERTIFIED Wi-Fi Direct™              |                                                         |                                           |                                 |
| Optimization                               |                                                         | Applications                              | Coexistence                     |
| Wi-Fi CERTIFIED EasyMesh™                  | Wi-Fi CERTIFIED Vantage <sup>™</sup>                    | Wi-Fi CERTIFIED Miracast™                 | CWG-RF                          |
| Wi-Fi CERTIFIED<br>Data Elements™          | Wi-Fi CERTIFIED WMM <sup>®</sup><br>(Wi-Fi Multimedia™) | Wi-Fi CERTIFIED<br>Voice-Enterprise       |                                 |
| Wi-Fi CERTIFIED<br>Agile Multiband™        | Wi-Fi CERTIFIED WMM-<br>Admission Control               | Wi-Fi CERTIFIED<br>Wi-Fi Aware™           |                                 |
| Wi-Fi CERTIFIED<br>Optimized Connectivity™ | Wi-Fi CERTIFIED WMM-<br>Power Save                      | Wi-Fi CERTIFIED Location™                 |                                 |

#### Connectivity certification programs

| Program                  | Description                                                                                                                                                                                                                                                                                                                                                                              | Remarks                                            |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Wi-Fi CERTIFIED n        | Based on the IEEE 802.11n ratified standard. Includes Wi-Fi radio standards - 802.11a, 802.11b, 802.11g in single, dual mode as required for backward compatibility. Also denoted as Wi-Fi 4.                                                                                                                                                                                            | Includes also Wi-Fi<br>Multimedia (WMM) testing    |
| Wi-Fi CERTIFIED ac       | Based on IEEE 802.11ac standard and associated with the fifth Wi-Fi generation, Wi-Fi CERTIFIED ac operates in 5 GHz and is capable of gigabit data rates. Also denoted as Wi-Fi 5                                                                                                                                                                                                       | Requires devices to pass all CERTIFIED n tests     |
| Wi-Fi CERTIFIED 6        | Based on the IEEE 802.11ax standard, Wi-Fi CERTIFIED 6 is the<br>newest generation of Wi-Fi technology operating in 2.4, 5, and 6<br>GHz. Wi-Fi CERTIFIED 6 provides greater capacity, multi-gigabit<br>data rates, better power efficiency, and high performance even in<br>densely populated environments. Wi-Fi 6E introduces the<br>advancements of Wi-Fi 6 into the 6 GHz spectrum. | Requires devices to pass<br>all CERTIFIED ac tests |
| Wi-Fi CERTIFIED<br>WiGig | Utilizes the 60 GHz frequency band to enable extremely high<br>performance, multi-gigabit connectivity and low latency for a range<br>of applications, including wireless docking, augmented<br>reality/virtual reality (AR/VR), high-definition multimedia streaming,<br>gaming, and networking.                                                                                        |                                                    |
| Wi-Fi Direct             | Allows Wi-Fi client devices to connect directly to one another without use of an access point.                                                                                                                                                                                                                                                                                           |                                                    |

#### Security certification programs

| Program                                                | Description                                                                                                                                                              | Remarks |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Wi-Fi CERTIFIED<br>WPA3™ (Wi-Fi<br>Protected Access 3) | Most advanced security capabilities for personal and enterprise<br>Wi-Fi networks; simplifies Wi-Fi security configuration and<br>enhances network security protections. |         |
| Wi-Fi Enhanced Open™                                   | Brings data protection to users in open networks without the need for user intervention                                                                                  |         |
| Protected Management<br>Frames                         | Extends security protections to unicast and multicast management action frames, maintaining the resiliency of mission-critical networks                                  |         |

## Optimization certification programs

| Program                              | Description                                                                                                                                                                                                                     | Remarks                       |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| TDLS (Tunneled<br>Direct Link Setup) | Allows network-connected devices to create a secure, direct link to transfer data more efficiently                                                                                                                              |                               |
| WMM®<br>(Wi-Fi Multimedia™)          | Support for multimedia content over Wi-Fi networks enabling Wi-Fi networks to prioritize traffic generated by different applications using Quality of Service (QoS) mechanisms.                                                 | "WMM Technical Specification" |
| WMM-Admission<br>Control             | Enhanced bandwidth management tools to optimize the delivery of voice and other traffic in Wi-Fi® networks.                                                                                                                     | "WMM Technical Specification" |
| WMM-Power Save                       | Power savings for multimedia content over Wi-Fi networks - helps<br>conserve battery life while using voice and multimedia applications<br>by managing the time the device spends in sleep mode                                 |                               |
| Wi-Fi QoS<br>Management™:            | Enables devices, applications, and network managers to prioritize<br>traffic flows, providing consistent end-to-end Quality of Service<br>treatment, and quality experiences with real-time applications.                       |                               |
| Wi-Fi Agile<br>Multiband™:           | Enables client devices and access points (APs) to exchange<br>information so the Wi-Fi network can guide devices to the best<br>bands, channels, and APs to maximize system efficiency and<br>provide the best user experience. |                               |

#### Optimization certification programs, cont

| Program                           | Description                                                                                                                                                                                                                                                                                                                      | Remarks |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Wi-Fi Optimized<br>Connectivity™: | Optimizes roaming and network selection in managed network<br>environments through improved scanning, link quality metric<br>assessment, faster initial authentication, and more efficient<br>transmissions                                                                                                                      |         |
| Wi-Fi Vantage™:                   | Provides an ongoing evolution of advanced features to elevate the user experience in managed Wi-Fi networks                                                                                                                                                                                                                      |         |
| Wi-Fi<br>EasyMesh™:               | Brings a standards-based approach to residential and small office Wi-Fi networks that utilize multiple access points. Wi-Fi EasyMesh delivers scalable, smart Wi-Fi networks that are easy to set up and manage.                                                                                                                 |         |
| Wi-Fi Data<br>Elements™:          | Establishes a standardized set of key performance indicators for<br>ensuring the health of Wi-Fi networks, enabling service providers to<br>deliver better Wi-Fi service, potentially reduce customer support calls,<br>and increase customer satisfaction; also provides a necessary<br>foundation for Wi-Fi EasyMesh networks. |         |

#### Wi-Fi CERTIFIED Certificate, e.g. Samsung Galaxy S20

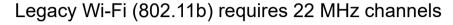
#### Summary of Certifications – Samsung SM-G980

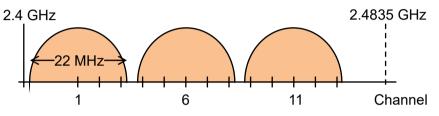
| CLASSIFICATION          | CERTIFICATION                                                                                                                                                                                                                                                                                                        |         |     |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| Applications & Services | Voice-Enterprise<br>Wi-Fi Aware™<br>Wi-Fi Direct®                                                                                                                                                                                                                                                                    |         |     |
| Connectivity            | 2.4 GHz Spectrum Capabilities<br>5 GHz Spectrum Capabilities<br>Wi-Fi CERTIFIED 6 <sup>™</sup><br>Wi-Fi CERTIFIED <sup>™</sup> a<br>Wi-Fi CERTIFIED <sup>™</sup> b<br>Wi-Fi CERTIFIED <sup>™</sup> b<br>Wi-Fi CERTIFIED <sup>™</sup> g<br>Wi-Fi CERTIFIED <sup>™</sup> n<br>Wi-Fi Enhanced Open <sup>™</sup> 2018-04 |         |     |
| Optimization            | WMM®<br>WMM®-Admission Control<br>WMM®-Power Save<br>Wi-Fi Agile Multiband™<br>Wi-Fi Optimized Connectivity™ 2018                                                                                                                                                                                                    |         |     |
| Security                | Protected Management Frames<br>WPA3™-Enterprise 2018-04<br>WPA3™-Personal 2019-08                                                                                                                                                                                                                                    | https:/ | //\ |

#### Questions and answers

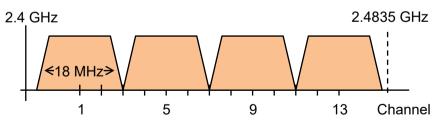





#### Standards Environment questions...

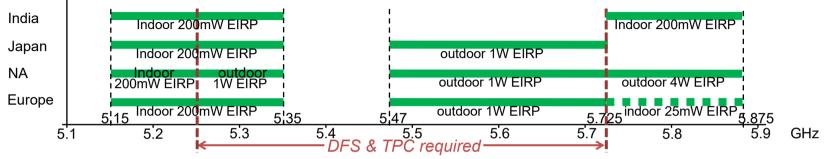

- 1) Where does IEEE 802.11 stem from?
- 2) Which organization introduced the term 'Wi-Fi?
- 3) What is the purpose of the Wi-Fi Alliance?
- 4) To which IEEE standardization organization belongs IEEE 802.11?
- 5) Which IEEE 802.11 standards and amendments are comprised in IEEE Std 802.11-2020?
- 6) Which layers of the ISO-OSI model are addressed in IEEE 802.11 specifications?
- 7) What aspects are covered through the Wi-Fi Alliance certification process?
- 8) On which IEEE radio standards are Wi-Fi 5 and Wi-Fi 6 based on?

## WLAN IEEE 802.11 aka Wi-Fi **WI-FI SPECTRUM**


## Wi-Fi in the 2.4 GHz ISM band

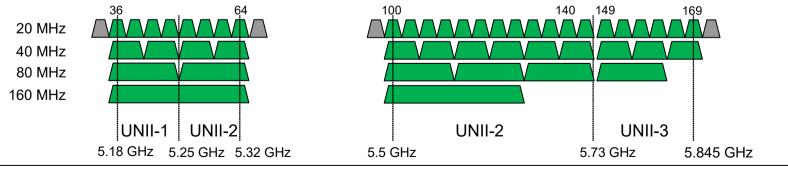
- Most of Wi-Fi today operates in the 2.4 GHz ISM band (13 channels)
  - In the US, only channels 1 11 are allowed.
  - IEEE 802.11b set the legacy rule to deploy Wi-Fi systems on channels
     1 6 11
  - Plain IEEE 802.11 OFDM systems (802.11g/n/ax) would not interfere when operating on channels 1 5 9 13
  - Hint: Follow established usage patterns to avoid collisions with multiple channels (stay in the lane)
- European regulatory requirements:
  - max TX power: 100 mW EIRP
  - Use of spread spectrum coding
  - Specification: ETSI EN 300 328





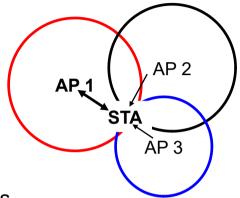

OFDM (802.11g/n/ax) fits into 20 MHz channels




#### License-exempt operation in the 5 GHz band

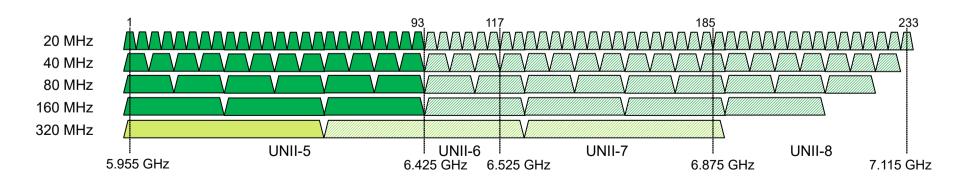
- 455 MHz of licensed-excempt spectrum available mostly worldwide
  - -Wi-Fi is usually secondary user of that spectrum, and has to obey primary usage (weather radars).




• Dynamic Frequency Selection (DFS) and Transmission Power Control (TPC) are required for most of the 5 GHz spectrum to protect primary users (e.g. weather radars)

- Specification: ETSI EN 301 893 (EN 300 440 for 5725-5875 MHz)




#### Spectrum management for the 5 GHz band

- DFS (Dynamic Frequency Selection)
  - APs dynamically select their operating channel after scanning for other users (e.g. weather radars)
  - STAs provide to APs detailed reports about spectrum usage at their locations.
  - In the case of detection of other spectrum users,
     APs stop operation and move to other (free) channels.
- TPC (Transmission Power Control)
  - Supports interference minimization, power consumption reduction, range control and link robustness.
  - APs define and communicate regulatory and local transmit power constraints.
  - Stations select transmit powers for each frame according to local and regulatory constraints.



## License-excempt extension into 6 GHz band

- New Wi-Fi spectrum in the 6 GHz band (5925 6425 7125 MHz)
  - Full 1.2 GHz band enabled by FCC, many other countries around the world following
  - Europe enables 5925 6425 MHz for license-excempt secondary usage
  - (up to) 3 device categories
    - Very Low Power (~ 25 mW EIRP) allowed also for outdoor,
    - Low Power (~ 200 mW EIRP) only indoor;
    - Potentially, higher power (up to 4W EIRP) with AFC (automatic frequency control)
- 6 GHz allows for wider channels (320 MHz) and legacy-free Wi-Fi operation (only Wi-Fi 6E)



#### Questions and answers

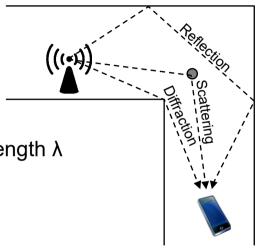




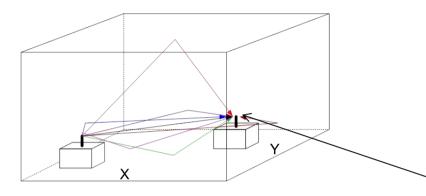
#### Wi-Fi spectrum questions...

- 1) What would be the optimal channel arrangement for a 802.11g/n-only system in Europe?
- 2) Why often the channel arrangement 1 6 11 is used?
- 3) Which channel bandwidth does IEEE 802.11b occupy?
- 4) What is the purpose of DFS and TPC in the 5 GHz band?
- 5) For which frequencies is the support of DFS and TPC mandatory in Europe?
- 6) How many non-overlapping 80MHz channels can fit in the 5 GHz range in Europe?
- 7) What is the 6 GHz band?
- 8) How much spectrum is available in the 6 GHz band in Europe and in the US?

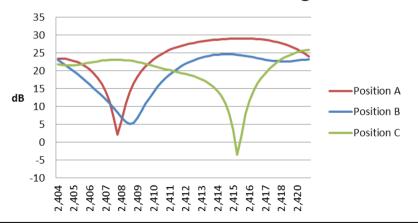
#### WLAN IEEE 802.11 aka Wi-Fi


## **WIRELESS CHANNEL CHARACTERISTICS**

## Radio signal propagation issues


- Path loss
  - Attenuation due to distance and frequency
- Reflection
  - Surface large relative to wavelength  $\lambda$  of signal
- Diffraction
  - Edge of impenetrable body that is large relative to wavelength  $\boldsymbol{\lambda}$
- Scattering
  - Obstacle size in order of wavelength  $\lambda$ , e.g. lamp posts

Main issues:


- Line-Of-Sight:
  - Reflected signals may cause major impact on signal
- non-Line-Of-Sight:
  - Diffraction and scattering are primary means of reception



#### WLAN channels with selective fading



**Relative Selective Fading** 

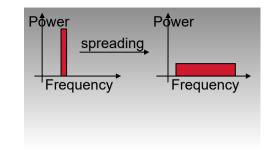


#### **Example of selective fading**

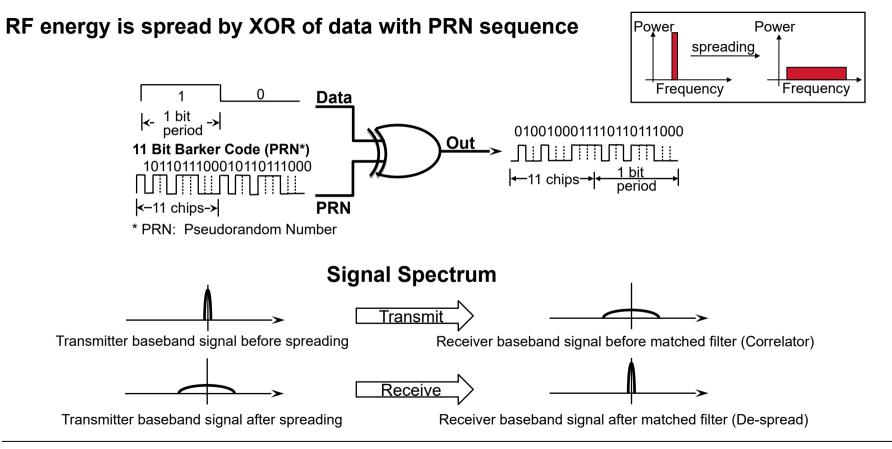
- Reference doc.: IEEE 802.11-13/0416r5
- Use of ray tracing to estimate delays
- Scenario
  - Room 100 ft by 70 ft (x, y)
  - Ceiling 20 ft
    - RX position (65, 44 w/ 3ft off ground)
  - 10dB obstruction to direct and floor rays

#### Transmission characteristics taken for

- Position A (21, 45) (delays 23 -100 ns)
- Position B (30, 45) (delays 27 102 ns)
- Position C (13, 45) (delays 21 99 ns)


#### Fades up to 25 dB!

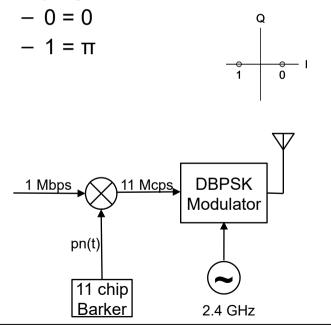
WLAN IEEE 802.11 aka Wi-Fi


# DIRECT SEQUENCE SPREAD SPECTRUM (DSSS)

#### IEEE802.11 PHY layer solutions for 2.4 GHz

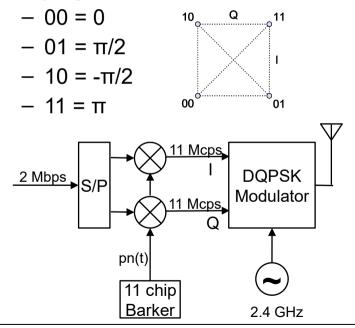
- 2.4 GHz Direct Sequence Spread Spectrum
  - DBPSK/DQPSK providing 1/2 Mbps
  - Channel bandwidth: 22 MHz
- 2.4 GHz High Rate DSSS (802.11b Wi-Fi 1)
  - CCK/DQPSK providing 5.5/11 Mbps
  - Channel bandwidth: 22 MHz




#### Direct Sequence Spread Spectrum



### Modulation of spreaded signal to carrier


#### 1 Mbps by DBPSK

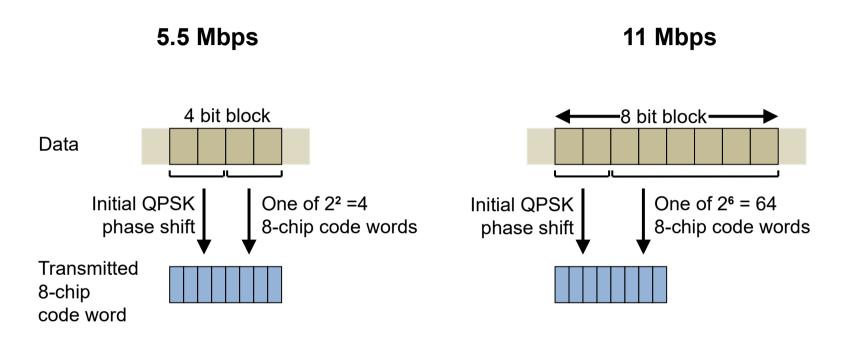
 Differential Binary Phase Shift Keying



#### 2 Mbps by DQPSK

 Differential Quadrature Phase Shift Keying

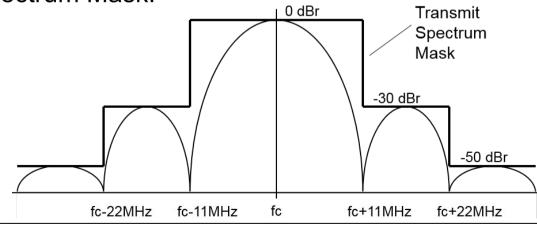



## High Rate DSSS (802.11b) overview

- Efficient coding scheme using the same spectrum allocation of a 802.11 DSSS system
  - Introduced by IEEE 802.11b
- Basic idea:
  - Instead of transmitting a spreaded signal with a particular code sequence, different complex code sequences are used for spreading the transmitted signal
  - Each 8-bit word of the original signal is encoded with a complex chip word consisting of 8 symbols; the chip rate is 11 Mchip/s.

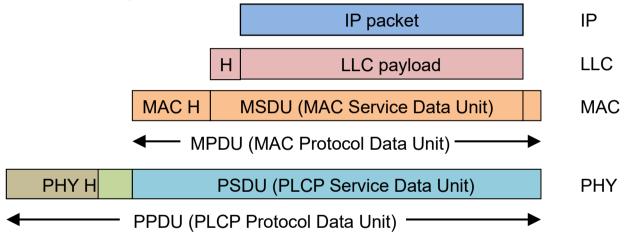
Complementary Code Keying (CCK)

- Leads to practically the same spectrum allocation as a DSSS system


#### Complementary Code Keying (CCK)

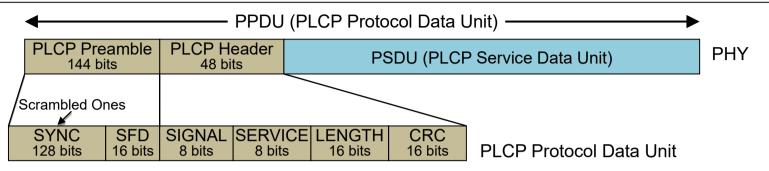


Code word repetition rate = 1.375 Mwords/s


#### HR/DSSS Summary and Spectrum

- Maximum data rate: 11 Mbps – intermediate steps: 1, 2, 5.5, 11 Mbps
- Modulation: BPSK, DQPSK, CCK
  - CCK = Complementary Code Keying
    - High data rate DSSS coding with inherent spreading
- Channel bandwidth: 22 MHz
- HR/DSSS Spectrum Mask:

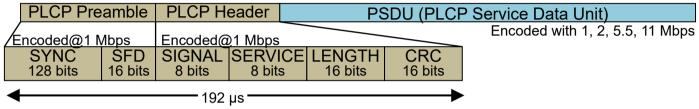



#### IEEE 802.11 Frame structure

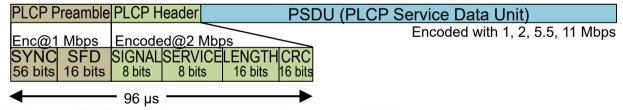
• Each protocol layer deploys its own header for conveying the protocol information between peers



- IEEE 802.11 PHY header carries the information for setting up the reception of radio frames
- Physical Layer Convergence Protocol (PLCP) provides a PHY independent Service Access Point (SAP) for higher layers


#### **DSSS Physical Layer Convergence Protocol (PLCP)**




- SYNC gain setting, energy detection, antenna selection, frequency offset compensation
- SFD Start Frame Delimiter "0000 1100 1011 1101", bit synchronization
- SIGNAL rate indication; (1, 2, 5.5, 11 Mbps)
- SERVICE used to distinguish the coding schemes
- LENGTH length of the PSDU part in µs
- CRC CCITT CRC-16, protects signal, service, and length field
- Coding:
  - PLCP preamble is sent with minimum data rate (1 Mbps)
  - PLCP header is either send with 1 Mbps (long preample) or with 2 Mbps (short preample)

#### **IEEE 802.11 DSSS Preambles**

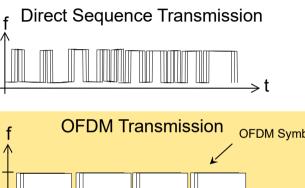
- The Preamble allows the receiver to acquire the wireless signal and synchronize itself with the transmitter.
- Long Preamble:

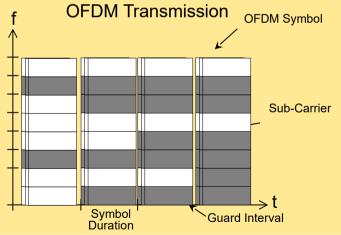


- Compatible with legacy IEEE 802.11 systems operating at 1 and 2 Mbps (Megabits per second)
- PLCP with long preamble is transmitted at 1 Mbps regardless of transmit rate of data frames
- Total Long Preamble transfer time is a constant at 192  $\mu s$
- Short Preamble:



- Not compatible with legacy IEEE 802.11 systems operating at 1 and 2 Mbps
- PLCP with short preamble: Preamble is transmitted at 1 Mbps and header at 2 Mbps
- Total Long Preamble transfer time is a constant at 96 µs


WLAN IEEE 802.11 aka Wi-Fi


## ORTHOGONAL FREQUENCY DIVISION MULTIPLEX (OFDM)

## Mitigating Delay Spread Channels

• More robust transmission by transformation of high speed bit sequences into a slower sequence of complex symbols

|       | D   | е   | m   | 0   |
|-------|-----|-----|-----|-----|
| ASCII | 68  | 101 | 109 | 111 |
| 128   | 0   | 01  | 0 1 | 0   |
| 64    | 1   | 1/  | 1   | 1   |
| 32    | 0   | 1   | 1   | 1   |
| 16    | 0   | 0   | 0   | 0   |
| 8     | 0   | 0   | 1   | 1   |
| 4     | 1   | 1   | 1   | 1   |
| 2     | 0   | 0   | 0 / | 1   |
| 1     | 0 ∛ | 1   | 1 ∛ | 1   |





## IEEE802.11 PHY layer solutions for 2.4 GHz, 5 GHz, 6 GHz

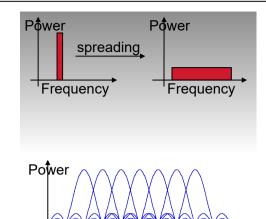
#### • 2.4 GHz Direct Sequence Spread Spectrum

- DBPSK/DQPSK providing 1/2 Mbps
- Channel bandwidth: 22 MHz

#### • 2.4 GHz High Rate DSSS (802.11b - Wi-Fi 1)

- CCK/DQPSK providing 5.5/11 Mbps
- Channel bandwidth: 22 MHz
- 2.4 GHz Extended Rate (802.11g Wi-Fi 3)
  - DSSS providing 1/2/5.5/11 Mbps
  - OFDM providing 6/9/12/18/24/36/48/54 Mbps
  - Channel bandwidth: 22/20 MHz
- 5 GHz Orthogonal Frequency Division Multiplex (802.11a Wi-Fi 2)
  - OFDM providing 6/9/12/18/24/36/48/54 Mbps
  - Channel bandwidth: 20 MHz

#### • 2.4 GHz & 5 GHz High Throughput (802.11n - Wi-Fi 4)

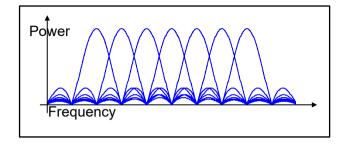

- OFDM with up to 4x4 MIMO providing up to 600 Mbps
- Channel bandwidth: 20 MHz & 40 MHz

#### • 5 GHz Very High Throughput (802.11ac - Wi-Fi 5)

- OFDM with up to 8x8 DL MU-MIMO providing up to 6900 Mbps (3460 Mbps to single STA)
- Channel bandwidth: 20 MHz, 40 MHz, 80 MHz, 160 MHz

#### • 1 – 7.125 GHz High Efficiency (802.11ax – Wi-Fi 6)

- OFDM/OFDMA with up to 8x8 MU-MIMO providing up to 9600 Mbbps
- Channel bandwidth: 20 MHz, 40 MHz, 80 MHz, 160 MHz

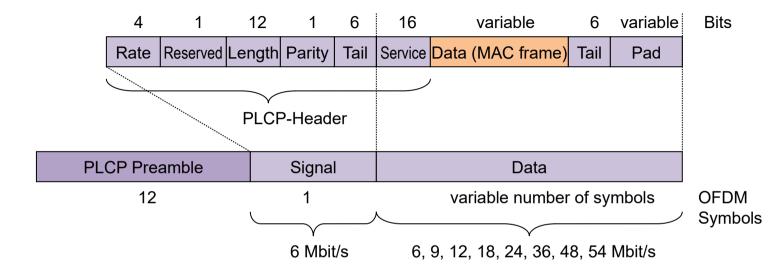



<sup>'</sup>Frequency

## WLAN IEEE 802.11 aka Wi-Fi WI-FI 2 (OFDM)

## Orthogonal Frequency Division Multiplex (OFDM)

- Initially introduced through 802.11a-1999
  - Cooperation with ETSI
- Transforms data into a set of orthogonal signals
  - Each signal is build by a combination of 'tones'
  - Generation/separation by FFT-64
    - IFFT/FFT used for coding/decoding
  - 52 sub-carriers out of the 64 samples used
  - 48 data sub-carriers and 4 pilot sub-carriers
  - 312.5 kHz sub-carrier spacing,
  - Total bandwidth: 16.25 MHz
- One OFDM symbol of a duration of 3.2 µs is sent every 4 µs (250 kSymbols/s)
  - Guard interval between symbols enable orthogonality of subsequent symbols despite delay spread
- Robust against reflections and multipath propagation




## OFDM - Coding and Modulation (802.11a/802.11g)

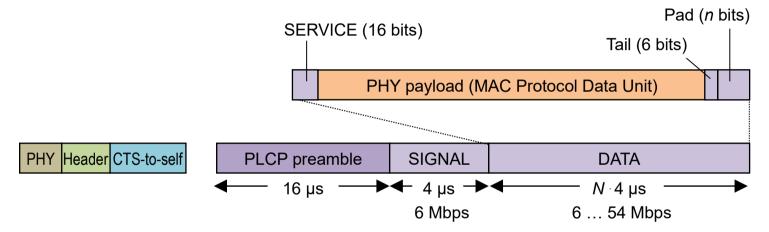
- 48 Data sub-carriers
- Sub-carrier modulation:
   BPSK, QPSK, 16QAM, 64QAM
- Bit interleaved convolutional FEC coding – R=1/2, 2/3, 3/4
- Data rates:
  - -6, 9, 12, 18, 24, 36, 48, 54 Mbps

| Data Rate<br>(Mbps) | Modulation | Coding Rate | Coded bits per subcarrier | Coded bits per<br>OFDM symbol | Data bits per<br>OFDM symbol | Receive sensitivity |
|---------------------|------------|-------------|---------------------------|-------------------------------|------------------------------|---------------------|
| 6                   | BPSK       | 1/2         | 1                         | 48                            | 24                           | - 82 dBm            |
| 9                   | BPSK       | 3/4         | 1                         | 48                            | 36                           | - 81 dBm            |
| 12                  | QPSK       | 1/2         | 2                         | 96                            | 48                           | - 79 dBm            |
| 18                  | QPSK       | 3/4         | 2                         | 96                            | 72                           | - 77 dBm            |
| 24                  | 16-QAM     | 1/2         | 4                         | 192                           | 96                           | - 74 dBm            |
| 36                  | 16-QAM     | 3/4         | 4                         | 192                           | 144                          | - 70 dBm            |
| 48                  | 64-QAM     | 2/3         | 6                         | 288                           | 192                          | - 66 dBm            |
| 54                  | 64-QAM     | 3/4         | 6                         | 288                           | 216                          | - 65 dBm            |

#### **OFDM - PHY Frame Format**



- OFDM PHY Preamble with 12 symbols takes 16  $\mu s$ 
  - 10 short training symbols without guard periods
    - Timing synchonization, antenna selection and locking to the signal
  - -2 long training symbols with guard periods for fine tuning
- Signal is one OFDM symbol with 24 data bits which takes 4  $\mu s$

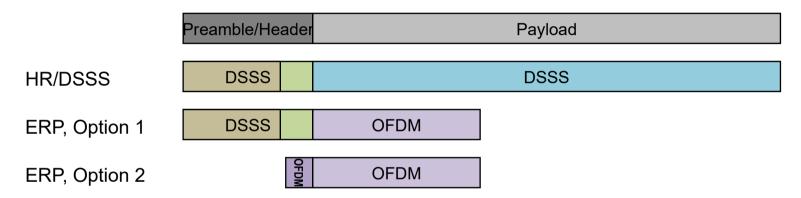

#### WLAN IEEE 802.11 aka Wi-Fi WI-FI 3 (HIGH RATE)

## Extended Rate PHY (802.11g)

- Introduced by 802.11g
  - Uses OFDM according to 802.11a in the 2.4 GHz band
    - Backward compatibility with HR/DSSS added
- Support of data rates above 11 Mbps
  - Data rates like 802.11a: 6 Mbps up to 54 Mbps
- Advantages of OFDM in the 2.4 GHz band:
  - worldwide harmonized license-free frequency band
  - lower attenuation than in the 5GHz band
    - less transmission power required
- MAC layer extensions with backward compatibility to HR/DSSS
- Can use same transmission channels as HR/DSSS
  - 18 MHz OFDM fits easily in 22 MHz HR/DSSS channel

## ERP PHY frame (OFDM native)

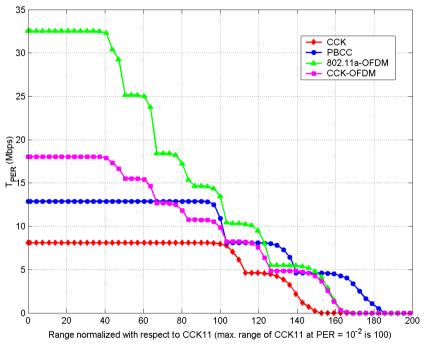
• Without backward compatibility, ERP deploys the same PHY frame as OFDM (802.11a)

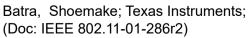



• HR/DSSS systems are not able to decode OFDM PHY frames

 For coexistence an additional protection methods like CTS-to-self or RTS/CTS may be required

#### ERP – HR/DSSS Interworksing


• ERP (802.11g) and HR/DSSS (802.11b) interworking is based on two alternatives regarding the ERP PHY frame structure:




- Option 1 enables HR/DSSS stations to decode the PHY header and keep off the medium according to the Length information
- Option 2 requires additional methods like CTS-to-self or RTS/CTS to provide information to HR/DSSS about other transmissions blocking the medium.

### IEEE802.11 a/b/g – performance and efficiency

#### Range vs. Rate





#### Efficiency

| Mode                                         | Mod.   | Coding | Mbps | Mbps  | %   |
|----------------------------------------------|--------|--------|------|-------|-----|
| OFDM                                         | 64-QAM | 3/4    | 54   | 26.12 | 48% |
| OFDM                                         | 64-QAM | 2/3    | 48   | 23.25 | 48% |
| OFDM                                         | 16-QAM | 3/4    | 36   | 18.31 | 51% |
| OFDM                                         | 16-QAM | 1/2    | 24   | 14.18 | 59% |
| OFDM                                         | QPSK   | 3/4    | 18   | 11.50 | 64% |
| OFDM                                         | QPSK   | 1/2    | 12   | 8.31  | 69% |
| OFDM                                         | BPSK   | 3/4    | 9    | 6.55  | 73% |
| OFDM                                         | BPSK   | 1/2    | 6    | 4.64  | 77% |
|                                              |        |        |      |       |     |
| HR                                           | CCK    |        | 11   | 7.18  | 65% |
| HR                                           | CCK    |        | 5.5  | 4.07  | 74% |
| DSSS                                         | QPSK   |        | 2    | 1.58  | 79% |
| DSSS                                         | BPSK   |        | 1    | 0.81  | 81% |
| Huawai Quidway WA1006E Wireless Access Point |        |        |      |       |     |

Huawei Quidway WA1006E Wireless Access Point (http://www.sersat.com/descarga/quidway\_wa1006e.pdf)

#### WLAN IEEE 802.11 aka Wi-Fi WI-FI 4 (HIGH THROUGHPUT)

# High Throughput (802.11n)

- Enhancement to OFDM (5GHz) and ERP (2.4GHz)
   Up to 600 Mbps in either band
- Main techniques deployed for increase of bitrate:
  - Enhancements to OFDM modulation scheme and timing
  - Channel bonding of two adjacent channels to 40 MHz
  - Up to 4 parallel streams using MIMO (Multiple Input Multiple Output) technique
  - MAC frame aggregation
    - A-MPDU as well as A-MSDU
  - Block acknowledgements

# Wi-Fi 4 (802.11n) High Througput (HT) PHY improvements

- OFDM (54 -> 58.5 Mbps)
  - 52 data sub-carriers instead of 48
- Forward Error Correction (58.5 -> 65 Mbps)
   5/6 coding rate in addition to 3/4
- Short Guard Interval (65 -> 72.2 Mbps)
   0.4 µs down from 0.8 µs
- Channel Bonding (72.2 -> 150 Mbps) - 40 MHz by combining two 20 MHz (108 data sub-carrier)
- MIMO (150 -> 600 Mbps)
  - Up to 4 parallel streams

## HT (802.11n) MCS Options for single stream

| MCS   | Spatial | Modulation | Coding | Data Rate [Mbps] |           |           |           |  |  |
|-------|---------|------------|--------|------------------|-----------|-----------|-----------|--|--|
| Index | Streams | type       | rate   | 20N              | 1Hz       | 40 N      | ЛНz       |  |  |
|       |         |            |        | 0.8 µs GI        | 0.4 µs Gl | 0.8 µs Gl | 0.4 µs Gl |  |  |
|       |         |            |        |                  |           |           |           |  |  |
| 0     | 1       | BPSK       | 1/2    | 6.5              | 7.2       | 13.5      | 15.0      |  |  |
| 1     | 1       | QPSK       | 1/2    | 13.0             | 14.4      | 27.0      | 30.0      |  |  |
| 2     | 1       | QPSK       | 3/4    | 19.5             | 21.7      | 40.5      | 45.0      |  |  |
| 3     | 1       | 16-QAM     | 1/2    | 26.0             | 28.9      | 54.0      | 60.0      |  |  |
| 4     | 1       | 16-QAM     | 3/4    | 39.0             | 43.3      | 81.0      | 90.0      |  |  |
| 5     | 1       | 64-QAM     | 2/3    | 52.0             | 57.8      | 108.0     | 120.0     |  |  |
| 6     | 1       | 64-QAM     | 3/4    | 58.5             | 65.0      | 121.5     | 135.0     |  |  |
| 7     | 1       | 64-QAM     | 5/6    | 65.0             | 72.2      | 135.0     | 150.0     |  |  |

• For multiple streams multiply numbers in table by number of streams.

# HT MIMO (Multiple Input Multiple Output)

Spatial Multiplexing (SM)



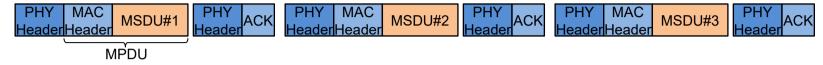
- Subdivides an outgoing signal stream into multiple pieces, transmitted through different antennas.
- When individual streams are received with sufficiently distinct spatial signatures, an SM enabled receiver can
  reassemble the multiple pieces back into one stream
- Maximizes data rate.
- Space-Time Block Coding (STBC)



- Sends an outgoing signal stream redundantly, using different coding for each of the transmit antennas
- Receiver has a better chance of accurately decoding the original signal stream in the presence of RF interference and distortion.
- STBC improves reliability by reducing the error rate and may be combined with SM.

# HT MIMO

• Transmit Beamforming (TxBF)



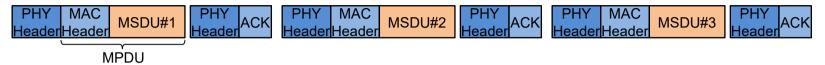

- Steers signal stream towards the intended receiver by concentrating transmitted RF energy in a given direction.
- Leverages signal reflection and multipath to improve received signal strength and sustain higher data rates.
- Required channel knowledge can be obtained implicitly or explicitly by obtaining feedback from the receiver

- Availability in HT products:
  - Only Spatial Multiplexing is part of Wi-Fi certification for HT out of the three different MIMO techniques specified in the standard IEEE 802.11n.

# HT MAC Protocol Data Unit Aggregation

• MAC efficiency suffers when transferring sequence of smaller frames

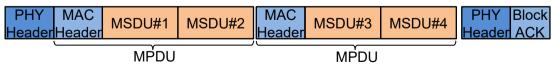



 Frame aggregation increases the payload that can be carried within a single 802.11 physical layer frame

• MAC Protocol Data Unit Aggregation (A-MPDU) groups multiple MPDU subframes each with its own MAC header into one PSDU with up to 65535 bytes.

- Reduced Interframe Space (RIFS) of 2µs used as delimiter between MPDUs
- Block Acknowledgement for reduction of ACKs to one per multiple MPDU transmission
- Selective retransmission of a single MPDU possible in the case that one of the aggregated MPDUs gets impacted.

# HT MAC Service Data Unit Aggregation


MAC efficiency suffers when transferring sequence of smaller frames



- MAC Service Data Unit Aggregation (A-MSDU) groups multiple MSDUs into a single PSDU with a MAC header and up to 7935 data bytes.
  - All MSDUs with the same SA, DA and 802.11e QoS profile
  - High sensitivity against transmission errors; in the case of a single bit error the whole A-MSDU hast to be retransmitted



• Higher resilience against transmission errors by a combination of MAC Service Data Unit aggregation and MAC Protocol Data Unit aggregation



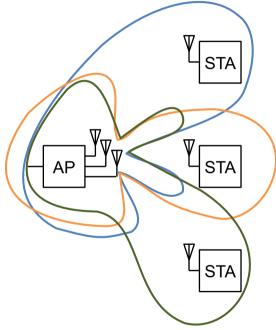
- Only erroneous MPDU has to be retransmitted.

#### WLAN IEEE 802.11 aka Wi-Fi WI-FI 5 (VERY HIGH THROUGHPUT)

# Wi-Fi 5 (802.11ac) Very High Throughput (VHT)

Extension to High Throughput (802.11n) in 5GHz with:

- Wider channel bandwidths
  - 80 MHz and 160 MHz channels in addition to 40 MHz and 20 MHz
- More MIMO spatial streams
  - Support for up to 8 spatial streams
- Multi-user MIMO (MU-MIMO)
  - Multiple STAs, each with one or more antennas, transmit or receive independent data streams simultaneously
  - Max. 4 streams to a single STA
- New MCS 8, 9
  - -256-QAM, rate 3/4 and 5/6, added as optional modes in addition to modes available in HT
- Single sounding and feedback format for beamforming – Instead of multiple methods in HT – to make certification happen.
- Coexistence mechanisms for 20/40/80/160 MHz channels – Dynamic spectrum allocation among 11ac and 11a/n devices
- Minor MAC modifications (mostly to support above changes)


# VHT (802.11ac) MCS Options for single stream

|       |                   |            |          | Data rate [Mbps] |          |          |          |          |          |          |       |  |
|-------|-------------------|------------|----------|------------------|----------|----------|----------|----------|----------|----------|-------|--|
| -     | -                 | Modulation |          |                  |          | 40 MHz   |          | 80 MHz   |          | 160 MHz  |       |  |
| index | idex Streams type | rate       | 0.8µs GI | 0.4µs GI         | 0.8µs GI | 0.4µs GI | 0.8µs GI | 0.4µs GI | 0.8µs GI | 0.4µs GI |       |  |
| 0     | 1                 | BPSK       | 1/2      | 6.5              | 7.2      | 13.5     | 15.0     | 29.3     | 32.5     | 58.5     | 65.0  |  |
| 1     | 1                 | QPSK       | 1/2      | 13.0             | 14.4     | 27.0     | 30.0     | 58.5     | 65.0     | 117.0    | 130.0 |  |
| 2     | 1                 | QPSK       | 3/4      | 19.5             | 21.7     | 40.5     | 45.0     | 87.8     | 97.5     | 175.5    | 195.0 |  |
| 3     | 1                 | 16-QAM     | 1/2      | 26.0             | 28.9     | 54.0     | 60.0     | 117.0    | 130.0    | 234.0    | 260.0 |  |
| 4     | 1                 | 16-QAM     | 3/4      | 39.0             | 43.3     | 81.0     | 90.0     | 175.5    | 195.0    | 351.0    | 390.0 |  |
| 5     | 1                 | 64-QAM     | 2/3      | 52.0             | 57.8     | 108.0    | 120.0    | 234      | 260.0    | 468.0    | 520.0 |  |
| 6     | 1                 | 64-QAM     | 3/4      | 58.5             | 65.0     | 121.5    | 135.0    | 263.3    | 292.5    | 526.5    | 585.0 |  |
| 7     | 1                 | 64-QAM     | 5/6      | 65.0             | 72.2     | 135.0    | 150.0    | 292.5    | 325.0    | 585.0    | 650.0 |  |
| 8     | 1                 | 256-QAM    | 3/4      | 78.0             | 86.7     | 162.0    | 180.0    | 351.0    | 390.0    | 702.0    | 780.0 |  |
| 9     | 1                 | 256-QAM    | 5/6      | N/A              | N/A      | 180.0    | 200.0    | 390.0    | 433.3    | 780.0    | 866.7 |  |

• For multiple streams multiply numbers in table by number of streams.

# Multi-User DL MIMO and Beamforming

- An VHT AP is able to use its antenna resources to transmit multiple frames to different clients.
   all at the same time and over the same frequency spectrum.
- To send data to a particular user, the AP forms a strong beam toward that user
  - Minimizing at the same time the signal strength in the direction of the other users ("null steering")
  - Each of the users receives a strong signal of the desired data that is only slightly degraded by interference from data for the other users.
- AP has to know about the channel conditions to all connected terminals, detected
  - either detected implicitly out of the received signal, or
     explicitly by the 802.11ac sounding protocol.
- By serving clients in parallel DL MU-MIMO allows to deliver more data in sum to clients being limited to a single or dual antenna.

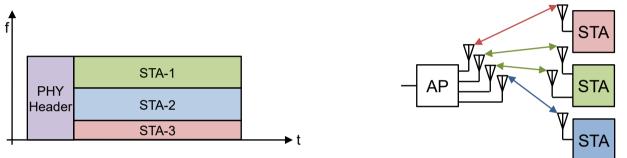


MU- MIMO with combination of Beamforming and Null Steering

# VHT (802.11ac) example configurations

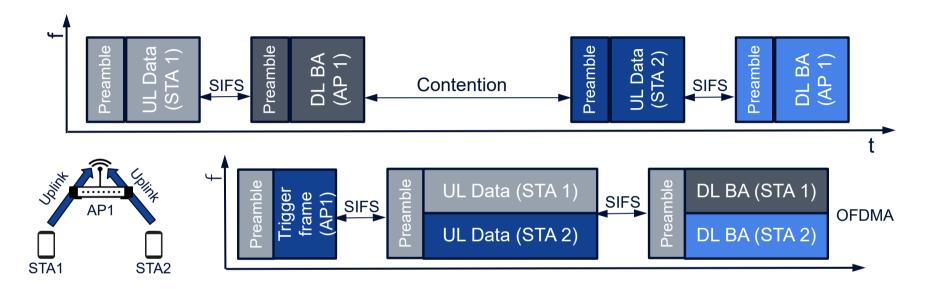
| Scenario                                                                                           | Typical Client<br>Form Factor                   | PHY Link Rate                                                         | Aggregate<br>Capacity |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------|-----------------------|
| 1-antenna AP, 1-antenna STA, 80 MHz                                                                | Handheld                                        | 433 Mbps                                                              | 433 Mbps              |
| 2-antenna AP, 2-antenna STA, 80 MHz                                                                | Tablet, Laptop                                  | 867 Mbps                                                              | 867 Mbps              |
| 1-antenna AP, 1-antenna STA, 160 MHz                                                               | Handheld                                        | 867 Mbps                                                              | 867 Mbps              |
| 2-antenna AP, 2-antenna STA, 160 MHz                                                               | Tablet, Laptop                                  | 1.69 Gbps                                                             | 1.69 Gbps             |
| 4-antenna AP, four 1-antenna STAs,<br>160 MHz (MU-MIMO)                                            | Handheld                                        | 867 Mbps to each STA                                                  | 3.39 Gbps             |
| 8-antenna AP, 160 MHz<br>(MU-MIMO)<br>one 4-antenna STA<br>one 2-antenna STA<br>two 1-antenna STAs | Set-top Box,<br>Tablet, Laptop,<br>PC, Handheld | 3.39 Gbps to 4x STA<br>1.69 Gbps to 2x STA<br>867 Mbps to each 1x STA | 6.77 Gbps             |
| 8-antenna AP, four 2-antenna STAs,<br>160 MHz (MU-MIMO)                                            | Digital TV, PC,<br>Tablet, Laptop,              | 1.69 Gbps to each STA                                                 | 6.77 Gbps             |

• *'ac Wave 2'* certification supports MU-MIMO, up to 4x4 MIMO and 160 MHz channel


## WLAN IEEE 802.11 aka Wi-Fi WI-FI 6 (HIGH EFFICIENCY)

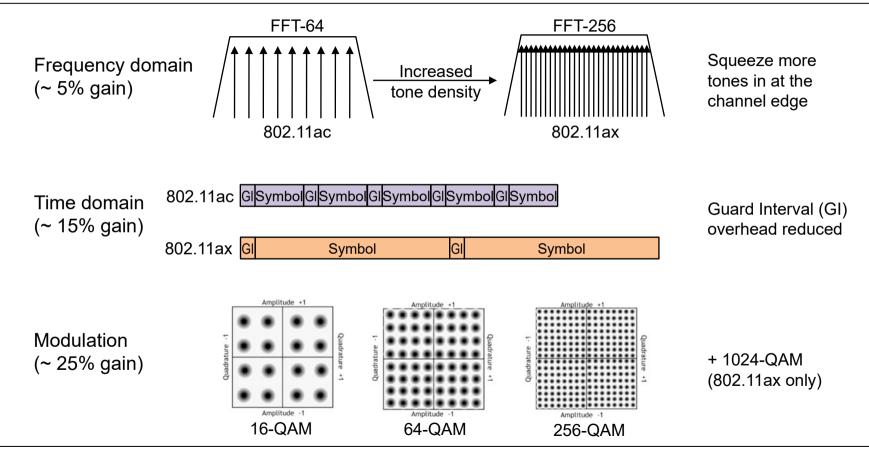
# Wi-Fi 6 (802.11ax) High Efficiency (HE) Wireless LAN

- No aim to increase peak data rates far beyond what is already available by VHT
- Main focus is on increasing performance of 802.11 in uncoordinated high density scenarios
- Three key focus points:
  - (1) To improve efficiency in dense networks with large number of STAs
  - (2) To improve efficiency in dense heterogeneous networks with large number of APs
  - (3) To improve efficiency in outdoor deployments
- The aim is to achieve a substantial increase in the real-world throughput
  - Creating an instantly recognizable improvement in QoE (cell edge behavior)
  - Generating spatial capacity increase (area throughput)


# High Efficiency technical highlights

- Increase network efficiency through multiplexing users in both frequency and space
  - Uplink and downlink OFDMA and MU-MIMO
    - OFDMA allows for much more fine-grain radio resource management than MU-MIMO




- Increase link efficiency with longer OFDM symbol (256-FFT) and high order modulation (1024-QAM)
- Improved support for outdoor operation (optional longer guard interval)
- Increase spatial reuse through BSS coloring, Spatial Reuse Groups, and dynamic clear channel assessment (CCA)
  - -Will be addressed in next section

# OFDMA reduces access overhead compared to OFDM



- OFDMA enables APs to further split channel usage to various parallel streams for concurrent access of multiple STAs
- · Uplink OFDMA starts with trigger frame directly followed by responses of STAs within their assigned resource units
  - Flexible arrangements of resource units to accommodate high variety of throughput demands
  - Leads to increased efficiency for frequent short data frames, in particular in the uplink
- Overall, OFDMA results in shorter transmission delays and less jitter.

## Wi-Fi 6 increased link efficiency



#### HE (802.11ax) Modulation and coding schemes for single spatial stream

| MCS   |          |      |               |              |                 |              |                 |              |                  |              |
|-------|----------|------|---------------|--------------|-----------------|--------------|-----------------|--------------|------------------|--------------|
| index | type     | rate | 20 MHz c      | hannels      | 40 MHz channels |              | 80 MHz channels |              | 160 MHz channels |              |
|       |          |      | 1600 ns<br>GI | 800 ns<br>Gl | 1600 ns<br>Gl   | 800 ns<br>Gl | 1600 ns<br>GI   | 800 ns<br>Gl | 1600 ns<br>GI    | 800 ns<br>GI |
| 0     | BPSK     | 1/2  | 8             | 8.6          | 16              | 17.2         | 34              | 36.0         | 68               | 72           |
| 1     | QPSK     | 1/2  | 16            | 17.2         | 33              | 34.4         | 68              | 72.1         | 136              | 144          |
| 2     | QPSK     | 3/4  | 24            | 25.8         | 49              | 51.6         | 102             | 108.1        | 204              | 216          |
| 3     | 16-QAM   | 1/2  | 33            | 34.4         | 65              | 68.8         | 136             | 144.1        | 272              | 282          |
| 4     | 16-QAM   | 3/4  | 49            | 51.6         | 98              | 103.2        | 204             | 216.2        | 408              | 432          |
| 5     | 64-QAM   | 2/3  | 65            | 68.8         | 130             | 137.6        | 272             | 288.2        | 544              | 576          |
| 6     | 64-QAM   | 3/4  | 73            | 77.4         | 146             | 154.9        | 306             | 324.4        | 613              | 649          |
| 7     | 64-QAM   | 5/6  | 81            | 86.0         | 163             | 172.1        | 340             | 360.3        | 681              | 721          |
| 8     | 256-QAM  | 3/4  | 98            | 103.2        | 195             | 206.5        | 408             | 432.4        | 817              | 865          |
| 9     | 256-QAM  | 5/6  | 108           | 114.7        | 217             | 229.4        | 453             | 480.4        | 907              | 961          |
| 10    | 1024-QAM | 3/4  | 122           | 129.0        | 244             | 258.1        | 510             | 540.4        | 1021             | 1081         |
| 11    | 1024-QAM | 5/6  | 135           | 143.4        | 271             | 286.8        | 567             | 600.5        | 1134             | 1201         |

# WLAN IEEE 802.11 aka Wi-Fi WI-FI 5 VS. WI-FI 6

#### IEEE 802.11ax (HE) enhancements compared to IEEE 802.11ac (VHT)

| Feature                        | IEEE 802.11ac                   | IEEE 802.11ax                                                                                                                                                                                                                                                                                   |
|--------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OFDMA                          | Not available                   | Centrally controlled medium access with dynamic assignment of 26, 52, 106, 242, 484, or 996 tones per station. Each tone consists of a single subcarrier of 78.125 kHz bandwidth. Therefore, bandwidth occupied by a single OFDMA transmission is between 2.03125 MHz and ca. 80 MHz bandwidth. |
| Multi-user MIMO<br>(MU-MIMO)   | Available in downlink direction | Available in downlink and uplink direction                                                                                                                                                                                                                                                      |
| Trigger-based Random<br>Access | Not available                   | Allows performing UL OFDMA transmissions by stations which are not allocated RUs directly.                                                                                                                                                                                                      |
| Spatial frequency reuse        | Not available                   | Coloring enables devices to differentiate transmissions in their own<br>network from transmissions in neighboring networks. Adaptive Power<br>and Sensitivity Thresholds allows dynamically adjusting transmit power<br>and signal detection threshold to increase spatial reuse.               |
| Target Wait Time (TWT)         | Not available                   | TWT reduces power consumption and medium access contention.                                                                                                                                                                                                                                     |
| Guard Interval duration        | 0.4 µs or 0.8 µs                | 0.8 μs, 1.6 μs or 3.2 μs                                                                                                                                                                                                                                                                        |
| Symbol duration                | 3.2 µs                          | 3.2 μs, 6.4 μs, or 12.8 μs                                                                                                                                                                                                                                                                      |

#### Real-world throughput comparisons

| <b>Wi-Fi 5 vs. Wi-Fi 6 throughput</b><br>Results of Wi-Fi 6 access-point throughput tests with both Wi-Fi 5 and Wi-Fi 6 clients in Mbps. |         |        |                      |        |                 |        |             |        |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|----------------------|--------|-----------------|--------|-------------|--------|--|--|--|
| Product                                                                                                                                  | Extreme | AP-650 | Cisco Catalyst C9115 |        | EnGenius EWS377 |        | Meraki MR55 |        |  |  |  |
| Throughput                                                                                                                               | AVG     | MAX    | AVG                  | MAX    | AVG             | MAX    | AVG         | MAX    |  |  |  |
| TP-Link<br>AC600 USB<br>Adapter<br>(Wi-Fi 5)                                                                                             | 196.13  | 229.19 | 122.17               | 187.01 | 134.28          | 150.67 | 194.73      | 214.04 |  |  |  |
| Galaxy S5<br>Phone<br>(Wi-Fi 5)                                                                                                          | 485.45  | 603.61 | 231.60               | 384.64 | 498.50          | 578.69 | 304.49      | 336.55 |  |  |  |
| Ubit AX200<br>PCI Adapter<br>(Wi-Fi 6)                                                                                                   | 370.53  | 418.86 | 177.59               | 226.74 | 454.69          | 528.42 | 420.31      | 483.28 |  |  |  |
| Apple iPhone<br>11 (Wi-Fi 6)                                                                                                             | 535.05  | 700.13 | 266.87               | 310.87 | 617.58          | 929.37 | 296.94      | 360.26 |  |  |  |

NETWORK WORLD / IDG

|                                 | NAT-Durchsatz                |                   | WLAN-Durchsatz |          |           |          |  |  |
|---------------------------------|------------------------------|-------------------|----------------|----------|-----------|----------|--|--|
|                                 | PPPoE                        | IP/IP             | 2,4 GHz nah    | 20 Meter | 5 GHz nah | 20 Meter |  |  |
|                                 | besser 🕨                     | besser 🕨          | besser 🕨       | besser 🕨 | besser 🕨  | besser ► |  |  |
| Asus RT-AX58U                   | 904                          | 950               | 332            | 305      | 737       | 347      |  |  |
| AVM Fritzbox 7530AX             | 884                          | 950               | 346            | 213      | 706       | 226      |  |  |
| D-Link DIR-X1860                | 901                          | 950               | 421            | 297      | 695       | 216      |  |  |
| Huawei WiFi AX3 (WS7200)        | 187                          | 948               | 382            | 276      | 893       | 283      |  |  |
| Linksys MR7350                  | 849                          | 949               | 322            | 256      | 691       | 309      |  |  |
| Telekom Speedport Pro Plus      | nicht messbar                | nicht unterstützt | 403            | 322      | 898       | 371      |  |  |
| AVM Fritzbox 7580               | 882                          | 949               | 204            | 189      | 848       | 309      |  |  |
| alle Werte in MBit/s, NAT-Perfo | ormance Downstream, WLAN geg | en Intel AX200    |                |          |           |          |  |  |

#### 'Despite being better in theory, today's Wi-Fi 6 does not always outperform Wi-Fi 5 in reality.'

https://www.networkworld.com/article/3541759/test-andreview-of-4-wi-fi-6-routers-whos-the-fastest.html

https://www.smallnetbuilder.com/wireless/wireless-reviews/ 33220-wi-fi-6-performance-roundup-five-routers-tested

https://www.techspot.com/article/2098-wifi-5-vs-wifi-6/

https://www.heise.de/select/ct/2021/3/2030915164965629451

#### WLAN IEEE 802.11 aka Wi-Fi

# WI-FI 7 (EXTREMELY HIGH THROUGHPUT)

## Looking ahead: Wi-Fi 7 aka IEEE P802.11be

- Extremely high throughput
  - New MAC and PHY modes of operation.
  - Maximum MAC throughput of 30 Gbps/AP (4x compared to 802.11ax).
  - Carrier frequencies between 1 and 7.125 GHz.
- Low latency
  - At least one mode of operation capable of improved worst case latency and jitter -- no specific requirements set in project authorization.
- Compatibility
  - Backward compatibility and coexistence with legacy 802.11 devices in the 2.4 GHz, 5 GHz and 6 GHz unlicensed bands.
- Timeline
  - Ratification expected for May 2024
- Potential technical features
  - Wider bandwidth (320 MHz), more antennas and spatial streams (16), better efficiency
  - Technical highlights: Multi link operation, coordinated multipoint transmissions

#### Questions and answers





## Wi-Fi radio questions...

- 1) Which of the IEEE 802.11 radio standards support operation in 2.4 GHz?
- 2) Which IEEE 802.11 radio standards only support operation in 5 GHz?
- 3) What are the additional bit-rates provided by Complementary Code Keying in 2.4 GHz?
- 4) How much more data can be transmitted through DQPSK compared to DBPSK?
- 5) What are the bit-rates supported by a high-rate direct sequence spread spectrum system (802.11b)?
- 6) What is the difference between a PPDU and MPDU data frame?
- 7) What is the purpose of the preample of the physical layer protocol data unit?
- 8) Through which method is the duration of the short preample reduced by 50%?
- 9) What does OFDM stand for?
- 10) How many of the 52 sub-carriers of 802.11a OFDM are used for data?
- 11) What is the purpose of guard intervals in OFDM?
- 12) Which symbol rate are is used by OFDM as introduced through 802.11a?

## Wi-Fi radio questions...

- 13) How long does a OFDM PHY preample in 802.11a take?
- 14) What is the benefit when operating the Extended Rate PHY (802.11g) without backward compatibility to HR/DSSS?
- 15) What additional methods are needed for coexistence of Extended Rate PHY without backward compatibility with HR/DSSS?
- 16) Which modulation is applied for 54 Mbit/s in the 802.11a/802.11g OFDM mode, and how many bits can be encoded in one tone?
- 17) What are the main techniques deployed by the High Throughput PHY (802.11n) for increased bitrates?
- 18) How does the OFDM symbol rate change in 802.11n/802.11ac through shortening the guard interval?
- 19) Which MIMO methods are specified in 802.11n, and which of them is mandatory for certification?
- 20) What is the benefit of MAC Protocol Data Unit aggregation compared to MAC Service Data Unit aggregation?
- 21) What is the drawback of MAC Protocol Data Unit aggregation compared to MAC Service Data Unit aggregation?
- 22) By which means does Very High Throughput PHY (802.11ac) provide higher bitrates compared to High Throughput PHY (802.11n)?
- 23) What is the difference between explicit beam-forming and implicit beam-forming?
- 24) What is the benefit of making use of FFT-256 instead of FFT-64 in 802.11ax?

## End of part 1

## Questions and remarks



